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ABSTRACT 
 
There are emerging trends to support an enterprise approach for providing training capabilities to the Warfighter at 
the point of need. As needs increase for easy operation, mobile training, and force reduction, an enterprise 
methodology focused on providing intelligent assistance and automation to After Action Review (AAR) artifact 
generation is needed to advance the training feedback paradigm.  In addition, a wider variety of capabilities must be 
provided to the instructor, allowing for opportunities to provide more focused training specifically tailored to training 
tasks.  An Intelligent AAR (IAAR) concept addresses future needs relative to providing adaptive training for the AAR. 
Intelligent Tutoring Systems (ITS) promise the ability to provide adaptive training focused on the specific needs of 
the trainee or team.  ITS has provided that type of training in the past but usually at the cost of specialized ITS 
implementations each time.  Many benefits can be realized through enabling an AAR to provide a common service 
oriented approach leveraging ITS as a reusable service.  The approach allows a training system the ability to provide 
a cloud-based service that other actors can use to enable IAAR for any type of training.  Such an approach must be 
capable of adapting to a wide variety of training systems and configurations to be a truly useful service in the larger 
enterprise.  Our solution to this problem is the injection of optimized technology into the AAR process and toolset 
with focus on building an adaptive approach for representing training strategies and assessing trainee proficiency.  We 
evaluated and prototyped various technologies and tools which may be appropriate for the development of an IAAR 
system.  Specifically, we investigated technologies, tools, and algorithms to facilitate machine/adaptive learning, 
keyword spotting, object detection, intelligent tutoring, data analytics, and others for applicability to the use cases 
defined in an Army training domain analysis.  
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INTRODUCTION 
 
Modern combat is complex and demanding.  To fight and win, we must train our Soldiers to successfully execute their 
Techniques, Tactics, and Procedures (TTPs).  Therefore, every training event is an opportunity to improve Soldier’s 
and leader’s readiness. Soldiers and leaders must know and understand what happened or did not happen during every 
training event to improve their individual and collective-task performances.  After-Action Reviews (AARs) in the 
training domain are designed to provide Soldiers and units feedback on mission and task performances. After-Action 
Reviews identify how to correct deficiencies, sustain strengths, and focus on performance of specific Mission Essential 
Tasks List (METL) training objectives. 
 
As training migrates from individual and crew to more collective based, the feedback to the individual Soldier about 
improvement opportunities and corrective actions for non-standard performance gets lost in the collective view.  Every 
training event should provide both collective and individual feedback to allow for and support growth and 
improvement opportunities.  A more automated process of collecting, consolidating, and analyzing the data from 
training events is needed, one which compares individual, crew, and collective training tasks against the standards and 
provides focused individual feedback for improvement.  This individual feedback should look at those aspects of the 
standards with the greatest opportunity for improvement in readiness.  The goal at the end of each training event, each 
Soldier should receive both crew and/or collective feedback, as well as individual feedback. 
 
The primary objective of this effort is to prepare Intelligent AAR (IAAR) products and supporting processes that 
distribute the AAR products to the AAR participants.  Currently, a live collective training event AAR occurs with 
only a copy of the AAR presentation provided to the participants.  With the availability of the internet, secure data 
distribution, and cloud technology, a broad and deep AAR experience is possible.  Ultimately, the training system will 
automatically create targeted AAR products and provide each to selected personnel in the training event.  
 
 
DOMAIN ANALYSIS, USE CASE, AND IMPLEMENTATION PATH 
 
As part of our research, we conducted a domain analysis of the AAR and Take-Home Package (THP) capabilities of 
the U.S. Army Force-on-Force (FoF) and Force-on-Target (FoT) live training systems.  This analysis identified 
existing AAR gaps and limitations as well as opportunities for the application of advanced adaptive/machine learning 
techniques to aid in individual, crew, and collective training feedback.  The analysis included the breadth of current 
US Army live training systems ranging from a simple platoon-based, land navigation exercise to a combat training 
center brigade level rotational event. The training systems were assessed on a scale of 1 to 9 (9 being best) against the 
following seven criteria: Quantity, quality, availability of data, competent / effective examples demonstrating what 
“right” is, availability of remedial training materials, availability of advanced training materials, and the ability to 
enhance the AAR experience in the future.  The resultant summary scoring is shown in Figure 1 below. 
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Figure 1. DAR of Existing Live Training Systems AAR & THP Capabilities 
 
 

 
Figure 2: DRTS Live Fire Exercise Data 

 
Because of the domain analysis, we selected the FoT Maneuver Stabilized (gunnery crew training for tank, Bradley 
and Stryker platforms) use case mainly for its large variety of data, well-structured doctrine and established AAR 
procedures.  The Army’s Project Manager for Training Devices (PM TRADE) Digital Range Training System (DRTS) 
provides command and control of live fire stabilized gunnery exercises and the production of the resultant AAR 
artifacts.  The data available from a DRTS live fire exercise is listed in Figure 2.  In tank gunnery exercises the exercise 
was broken into runs which contain n number of steps, with each step containing a sequence of target exposures of 
different types, distances, and sequences; all under strict timing control.  This highly structured event allowed a simple 
application of heuristic techniques with natural discrete start and stop times contained on the step boundaries to 
maintain automated AAR organization.  In addition, the large amount of instrumented data from the tank and the 
surrounding range provided an outstanding first use case to explore machine learning on multiple data types with this 
research focusing primarily on video and audio sources. 
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A Decision Analysis Report (DAR) (Figure 1) utilizing a formal pairwise decision analysis process determined 
available technologies and tools appropriate for IAAR system development.  The survey collected industry standard 
and leading-edge products in the broad categories of (1) machine learning frameworks, (2) data solutions, and (3) 
rules engines.  Machine learning frameworks are computation libraries that provide abstractions over efficiently 
implemented and well-known algorithms.  They provide an out-of-the-box solution to distribute the computations 
necessary to train a machine learning algorithm.  Machine learning in this research provided us the ability to augment 
the existing exercise data by identification of teaching points that would traditionally be identified by the 
trainer/instructor.  The second category of tools considered allowed for the non-relational storage of data housing any 
data type or format (e.g.; photos, video, audio, documents, etc.) and is designed for frequent access.  The tool selected 
housed the repository of information ingested from the live fire range and supplemented by assertions from both the 
machine learning framework and rules engine.  Lastly, the rules engine or ruleset management system allowed our 
system to separate the problem space on a set of defined rules or heuristic markers.   In our design, the rules engine 
provided a structure from which to launch appropriate machine learning models, branching, and potentially apply 
alternate solution types based on the conditions presented.  
 
In terms of an implementation path progression generally characterized as crawl, walk, run; we considered this use 
case selection paired with IAAR techniques as a “walk.”  A precursor “crawl” proof of concept entailed capturing data 
from a live fire marksmanship range controlled and instrumented with PM TRADE’s Targetry Range Automated 
Control and Recording (TRACR) and augmented with an acoustic sensor system, Location of Miss and Hit (LOMAH), 
capable of transmitting X-Y coordinates of fired round locations in respect to the target silhouette.  In particular, the 
work focused on capturing the firing data using xAPI, for the purposes of providing (1) individual feedback and access 
to personalized remedial interactive multi-media content based on shot grouping patterns, (2) aggregated data views 
for trainers and range operations personnel, (3) flexible data views for training researchers and resource analytics, and 
(4) automated sharing of qualification data with the Army Training Management System (ATMS) (Durlach & 
Washburn, 2015). 
 
The challenge of this next step “walk” use case was to: (1) capture the data from completed DRTS exercises, (2) 
transform the data from a real time operational database to a data repository organized for efficient IAAR analysis and 
processing, (3) apply heuristics, machine learning, and other techniques to gain insightful AAR artifacts, (4) present 
those AAR artifacts in a Soldier accessible, web-based medium, and finally (5) identify meaningful trending and data 
analytics that can improve U.S. Army training doctrine.  
 
 
RISE OF ANALYTICS THROUGH MACHINE LEARNING 
 
Within the commercial market space there have been significant gains in big data and distributed processes that support 
enhanced data driven analytics (Najafabadi, et. al., 2015).  This rise of capabilities aligns with the desire to enhance 
the AAR process through automated analytics of training data into AAR products.  Also, vast improvements in video 
and audio data valuation, machine learning, and heuristics tools to ‘assess’ training proficiency beyond the data and 
potentially into unit and individual behaviors allows the enhanced IAAR application to be a near-term reality.  Our 
focus early in this research was on the application and assessment of several machine learning models and 
architectures. 
 
Applying Machine Learning to the Maneuver Stabilized Gunnery Use Case 
 
For machine learning to successfully become an applicable solution, the following criteria needed to be addressed 
(Domingos, 2012): (1) an algorithmic approach that can be learned empirically using data, which requires the data to 
have features that can be extracted, and (2) there exists a quantifiable error/loss between expected and actual output 
that can be minimized during the learning process. 
 
For the maneuver stabilized gunnery use case described earlier, the most applicable uses of machine learning were:  
 

1. Assessing the accuracy, sequence, and effectiveness of verbal commands exchanged by the tank crew during 
the exercise—Army doctrine defines a strict vocabulary and sequence of verbal cues exchanged among tank 
crew members for enemy engagements.  Incorrect, confused, or delayed verbal communication results in 
reductions in a crew’s score (crew cuts) during evaluation and provides AAR teaching opportunities (U.S. 
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Army FM 17-12).  An applied “audio recognition” model provided detection of spoken commands combined 
with a timeline of tank crew events, allowed assessment of crew cuts penalties. 
 

2. Providing supplemental data to assist evaluators in determining appropriate scanning techniques and threat 
prioritization during the exercise—In each tank engagement step, the tank crew is presented with multiple 
threats at different distances and behaviors that the crew must successfully prioritize within tight time 
constraints (U.S. Army, FM 23-91).  The application of an “object detection” model allows us to detect and 
classify range targets from the thru-site video feeds to populate doctrinally-based prioritization 
tables.  Combined with live fire engagement data from the range, the crew is accurately assessed against 
prioritization doctrine for a given step and assessed crew cuts for mistakes. 
 

3. Verifying correct ammunition loading protocol when operating the breech—An implementation of an “image 
classification” model classifies whether the breech is in the correct position combined with the “audio 
recognition” model that verifies the breech is up before the Loader crew member announces “Up”, 
designating the round is ready to fire. 

 
Applied Machine Learning Models for Verbal Tank Crew Commands 
 
We adopted Google’s implementation of the small-footprint “keyword spotting” model architecture that is presented 
in a Google report (Sainath & Parada, 2015).  The “keyword spotting” model architecture is a small convolutional 
neural network that detects a specific set of verbal utterances that the model trains on.  While traditional speech to text 
solutions are very complex and require a deep neural network and significant amounts of data to train, the “keyword 
spotting” problem is simpler and can be performant when trained on a modestly sized dataset.  Due to the challenge 
of detecting verbal commands that are definitive with respect to the doctrine, “keyword spotting” is a good fit, and 
has proven practical to train and evaluate. 
  
Initial attempts at utilizing Mozilla’s open source implementation of the “deep speech” model architecture (Mozilla 
Research, 2018) presented in the paper from Baidu Research (Hannun, et. al.; 2014) were abandoned.  The “deep 
speech” architecture is a robust deep neural network architecture that produces text transcripts from audio files, and 
trains on audio clips with unaligned text transcripts.  At the time of our investigation, there were no pre-trained models 
available for inference or transfer learning, and thus we would have to train the model solely from our own custom 
datasets.  The complexity of the model architecture that allows the deep learning of spelling, time alignment, and other 
complexities from unaligned text transcripts requires a significantly large dataset, of which we did not have the 
resources to purchase or build, and thus could not establish a performant model. 
 
Applied Machine Learning Models for Assessing Appropriate Scanning Techniques and Threat Prioritization 
 
Our initial approach was to use image classification, with performing transfer learning on Google’s inception model 
architecture (Szegedy, et. al.; 2015) to perform a binary classification of whether or not a target was present in an 
image.  This approach was not ideal, however, as the inference would not indicate where the target was located.  An 
additional consequence of performing a binary classification is that it did not provide any information on the type of 
target in the image.  Adding classes for each type of target would mitigate this, but would not properly indicate multiple 
targets within the field of view.  To address these concerns, we instead adopted Google’s object detection Application 
Programmer Interface (API).  The object detection API is a pipeline for training object detection model architectures 
that have similar input and output specifications (Fergus, et. al.; 2005). There are many model architectures available 
in the API.  We researched, trained, and evaluated the following four model architectures:  
 

1. Faster R-CNN: This model is an industry standard region-based convolutional neural network or Faster R-
CNN.  Through research and testing we found that Faster R-CNN was a great option for accurate predictions, 
but it lacked the efficiency of other models in training and processing the predictions.  Faster R-CNN was 
complex, the model contained large numbers of hidden, convolutional, and fully connected layers, which 
lead to tradeoffs.  

• Pros: (1) Faster R-CNN accurately predicted the location of the objects that were trained, (2) Faster 
R-CNN was easy to train.  The configuration was straightforward and required a minimum time to 
configure and setup. 

https://arxiv.org/abs/1412.5567)
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• Cons: (1) Faster R-CNN is comparatively slow.  The time required to make a single prediction is 
usually less than a frame per second even with dedicated, advanced hardware ruling out this model 
for our application. 

 
2. Mask R-CNN: Mask R-CNN is an architecture based on the Faster R-CNN.  In parallel with the predictions 

made with R-CNN, Mask R-CNN placed a mask on the detected object along with a bounding box.  The 
model slightly added to the computational cost of Faster R-CNN, but it gained the ability to see a full outline 
of the object for detection. 

• Pros: (1) Added masks provided additional capability for potential future applications. (2) 
Maintained the accuracy of Faster R-CNN. 

• Cons: (1) The slowest model we considered. (2) More difficult to set up due to the masks required 
in the annotations. 

 
3. R-CFN: Due to the simple layout of the architecture, R-CFN executed with similar accuracy as Faster R-

CNN in less time.  R-CFN had many fully connected layers placed on top of each other that attribute to its 
simple design and efficiency.  The model deduced position sensitive scores for each of the pixels and created 
a confidence score of the object's location based on the scores.  

• Pros: (1) A middle ground between speed and accuracy (moderate performance and moderate 
accuracy). (2) Straightforward to configure and setup. (3) Simple models lead to more efficient 
usage. 

• Cons: Not as accurate as Faster R-CNN for the detection of small objects.  
 

4. Single Shot Multi-Box Detector (SSD): SSD was the highest performance model we assessed.  The accuracy 
was acceptable, but the speed was exceptional.  This model did, however, struggle with small object 
detection.  The model relied on a small number of layers to make predictions.  SSD eliminated a large amount 
of the layers contained in other models resulting in less accurate predictions.  However, this model relied on 
a more sophisticated detection algorithm for identifying different features within the frames.  The model 
reshapes, filters, and rotates every image to deduce the best feature maps, improving accuracy.   

• Pros: (1) SSD was highly efficient due to its simple architecture. (2) Straightforward to configure 
and setup. (3) Required less hardware. 

• Cons: (1) The lack of complexity made it hard for the model to generate accurate predictions on 
small objects. 

 
Applied Machine Learning Models for Assessing Correct Ammunition Loader Protocol 
 
Using Google’s “inception” model was not an optimal choice for addressing the correctness of scanning technique 
and threat prioritization, as discussed above.  However it was an optimal choice for addressing the correctness of the 
ammunition loader protocol.  Performing a binary classification on images from the loader player unit video with the 
breech in view was sufficient in conjunction with the audio recognition on the recorded crew communications.  The 
“inception” model architecture is widely accepted as a performant solution for image classification.  There are many 
pre-trained versions available (the most popular being those trained on the ImageNet dataset) that are straightforward 
to perform transfer learning on with a custom dataset. 
 
Application of a Heuristic-based Software Service to Organize the IAAR Analysis Process 
 
Our research application, designed as a Service-oriented Architecture (SOA), contained a rules service built on the 
open source Java Drools Business Rules Management System (BRMS).  Drools BRMS is a collection of tools that 
allow separation and reasoning over logic and data.  The core rules engine was capable of both forward and backward 
chaining inferences.  In general, the rules engine consisted of a knowledge base and a set of production rules.  The 
system applied the production rules to data in the knowledge base creating additional data as output.  This deduced 
data was added to the knowledge base where it contributed to future inferences. 
 
During our research, we developed a set of doctrine driven production rules. Our rules were based on armor crew 
Table VI Gunnery and crew level Direct Fire Engagement processes.  The rules service communicated with the 
machine learning service to detect crew communications and actions from the audio and video files in our knowledge 
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base.  The analysis process used multiple iterations of forward chaining logic to make a deductive closure on events 
in the knowledge base.  This was done by applying production rules to extract previously uncaptured events.  
Uncaptured events may be appropriate actions, inappropriate actions or lack of required actions taken by the crew.  
These events were added to the knowledge base as deduced events or potential crew penalties.  As a result, our system 
could not only add to the number and type of existing AAR artifacts, but also accurately deduce scoring penalties 
based on the combinatorial assessment of multiple artifacts much like a human instructor.  Ultimately, this led to the 
reduction in the amount of time required by instructors to prepare AARs and enabling a completely automated IAAR.  
 
Army training doctrine provides TTPs used by armor crews to achieve expertise while conducting their mission in 
any operational environment.  Therefore, it is important that our IAAR rely on Army doctrine as the main reference 
in developing the intelligence associated with our system.  Measures of Performance (MoP) and Measures of 
Effectiveness (MoE) were obtained from the doctrine listed in Table 1. 
 

Table 1.  U.S. Army Armor Crew Doctrinal Sources 
Designation Title Description 

TC 3-20.31 
(March 2015) 

Training And 
Qualification, 
Crew 

Provides training principles and techniques for use by the crew to gain 
proficiency in engaging and destroying threats efficiently in any operational 
environment 

TC 3-20.31-4 
 (July 2015) 

Direct Fire 
Engagement 
Process (DIDEA) 

Provides the standardized direct fire engagement process for crews, teams, 
squads, and small units. It provides principles coordinating the actions of 
these entities for establishing cohesion through a common, standardized 
engagement process. 

 
Relating Causal Issues from Raw Training Data 
 
Assessments were based on first order and second order conditions.  First order conditions were comprised of simple 
questions that could be answered directly from the raw data. “Was the target hit?”, “Was the target killed?”, “How 
many rounds were fired?” and many other criteria could be evaluated upon as first order conditions.  Evaluations were 
categorized as “At Expectation”, “Above Expectation”, or “Below Expectation.” These first order conditions were the 
basis for creating the “language” that defined second order conditions.  Second order conditions were comprised of 
any combination of first order conditions that tried to answer more complex questions.  Feedback could then be based 
off these more meaningful evaluations.  For example, using the first order conditions mentioned above, evaluating 
“Target Killed” at “Below Expectation” and “Target Hit” at “Below Expectation” indicated that the target was not 
killed because it was never hit.  Feedback could then be provided to improve accuracy.  Another rudimentary example 
would be to evaluate “Target Killed” at “Below Expectation” and “Rounds Fired” at “Below Expectation” which 
indicated the target was not killed because the minimum number of rounds to kill it were not fired.  Feedback can then 
be provided for the identification or engagement process.  These were only a few simple examples, and as more data 
and different first order conditions are created, the vocabulary for more meaningful second order conditions will 
mature.  Therefore, as the system becomes more robust, feedback can become more directed and precise. 
 
 
APPLICATION OF AN INTELLIGENT TUTORING SYSTEM (ITS)  
 
An Intelligent Tutoring System (ITS) is a computer system that aims to provide immediate and customized instruction 
or feedback to learners, usually without requiring intervention from a human teacher (Mislevy & Gitomer, 1995).  
ITSs have the common goal of enabling learning in a meaningful and effective manner by using a variety of computing 
technologies. There is a close relationship between intelligent tutoring, machine learning, cognitive learning theories 
and design; and there is ongoing research to improve the effectiveness of ITS.  An ITS typically aims to replicate the 
demonstrated benefits of one-to-one, personalized tutoring, in contexts where students would otherwise have access 
to one-to-many instruction from a single instructor (i.e., classroom lectures), or no instructor at all (i.e., online 
lectures).  In our research, we assessed the Army’s Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare, 
et. al.; 2017), and applied our machine learning algorithms and heuristic models to develop a fully automated and 
IAAR capability. 
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Generalized Intelligent Framework for Tutoring (GIFT) 
 
GIFT is a SOA based design that uses a message broker to route messages between the services.  Figure 3 illustrates 
the current set of services in GIFT, contained in the yellow box, connected to external systems such as a Learning 
Management Systems (LMS) and training applications through the training gateway(s) (Sottilare, et. al.; 2017).  In 
the figure, the common modules that make up GIFT instances are marked with a green star.  Each of these are services 
and have a well-defined interface.  In addition, since the GIFT tool supports both research and Intelligent Tutoring, 
the services and message structures are adaptable and can be extended as required for a transition.  Figure 4 illustrates 
the minimum common reusable core of the GIFT system (Sottilare, et. al.; 2017).  These services are the minimum to 
support ITS with the learner.  The other aspects of GIFT are mainly used in support of ITS research and the specific 
implementation of connecting trainee devices.  These services, referred to as the learning effect chain, are the “Learner 
Module”, the “Pedagogical Module”, and the “Domain Module.”  The “Learner Module” service manages the learner 
state which tracks the learner performance and levels of mastery as they progress through the training strategy.  The 
“Pedagogical Module” service encodes the pedagogy, or the current method of providing training.  This service can 
be adjusted to alter the manner of instruction and to provide both macro and micro adaptation recommendations for 
the learner.  Finally, the “Domain Module” service supports the representation of the knowledge required for 
assessment of learner tasks and the training strategy for the specific domain knowledge. 
 

 
Figure 3: GIFT SOA System Decomposition 

 

 
Figure 4: GIFT SOA Reusable Core Services 
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Our approach for the IAAR was to adapt GIFT to provide a set of software services that support connection to the 
DRTS system.  The system provided interfaces for the instructors to specify the training strategy.  The system also 
provided interfaces to specify metrics and trainee performance data for assessment.  The system defined the approach 
for adaptation of the live data and provided “Data Collectors” to collect, filter, and/or classify exercise specific data 
(i.e.; target hit or miss) for assessment.  The resulting services gave results and data on trainee proficiency based on 
the input training strategy specifications provided as AAR training doctrine artifacts. 
 
Generating Intelligent Feedback from World State Data  
 
GIFT generates feedback but currently is not tied to any type of world state data.  For IAAR, we adapted this, and tied 
a feedback item directly back to the entity, location, and time data that occurred during a training exercise.  This 
allowed for the implementation of many useful features.  For example, time data could be used to synchronize the 
audio and video streams for the time that the feedback item occurred.  World location data could later be used to map 
the feedback item on a 2-dimensional overhead map.  Entity data could be used to tie feedback to a specific unit or 
crew member.  The addition of this data enabled feedback to become more directed and precise, as well as made AAR 
review material more informative and intuitive.  
 
Incorporating an Intelligent Training Strategy 
 
To provide the interface, we developed a data model to represent domain knowledge and training strategy by 
leveraging the GIFT data model.  This was represented as a set of XML data that decomposed what a learner must do 
to be proficient.  For example, a list of tasks that must be accomplished with measures that tells the system how to 
determine when it’s done and how well the learner performed.  The data also defined what the system should do next 
if the data is a specific value as part of the training strategy.  For a simple example, assume the learner task resulted 
in a hit count of three as a task measure.  The data could encode a strategy to say a hit count of three is low proficiency 
which prompts the system to provide feedback with something like “Adjust your aim.”  In addition, the strategy might 
also specify that a hit count of three causes the scenario to get easier by making targets slow down or stop.  On the 
other hand, the strategy might say that a hit count of ten has the system speed up targets or start shooting back—that 
is called micro adaptation.  In the end, the training specialist encodes how the trainee should proceed by specifying 
the XML data for the assessment approach and the training strategy that the ITS interprets and acts on.  At the end of 
the training session, the training strategy can also suggest the next course the student needs to take based on how well 
they did—that is called macro adaptation. 
 
The advantage of this approach is it allowed the ITS to assess learner proficiency while using the training capability 
without tight coupling.  There are several ITS solutions in the industry.  However, most ITSs are tightly coupled, 
embedded in source code, and are specific to the training device.  That tightly coupled approach makes it difficult to 
alter these ITSs for the next trainer or sometimes even for a new training task since the data is typically encoded into 
the system.  The approach provided by GIFT results in systems being able to provide their own specific data driven 
descriptions and in return get back feedback/results and dynamic adaptation at runtime all based on their own training 
approach and data to measure.   
 
 
RESULTS, LESSONS LEARNED, AND NEXT STEPS 
 
This is an on-going research project where our initial results indicate that the combination of machine learning, 
heuristic techniques, and intelligent tutoring can successfully be applied to the existing AAR data captured from an 
instrumented live exercise to produce meaningful and insightful evaluation teaching points.  Given our limited 
availability of data from live tank gunnery training events at Army ranges, our IAAR system successfully identified 
and detected crew cuts from audio and video data matched with U.S. Army doctrine and range system data.   
 
The largest hindrance to the development of our models to date has been the availability of suitable live exercise data. 
Machine learning models crave large amounts of data in establishing “what right is.”  Similarly, that same data can 
be used to create remedial training materials for Soldiers to review.  Imagine presenting to the tank crew an example 
of “what is right” for a training task prior to execution, then conducting the live training, and immediately presenting 
that same crew with their performance overlaid with “what is right.”  We believe the training benefits of such a strategy 
would improve comprehension of the tasks, retention, and future performance. 
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One lesson learned was how to navigate the classes of machine learning solutions and evaluate the appropriateness of 
a solution to the problem.  For example, the initial approach taken for detecting targets was to use a binary image 
classification to indicate if there was a target in the picture.  The purpose of detecting targets was to supplement the 
evaluator with information to assist in deducing incorrect scanning techniques or incorrect threat prioritization.  Binary 
image classification was not a good fit as it did not indicate the type of target in the image, only if there was one 
present.  Creating classes for each target type was not ideal either, as the image classification would produce its best 
guess of what the picture was, it could not indicate multiple instances of the same target.  Image classification could 
indicate that there are different targets in the picture by providing multiple predictions with high confidence.  However 
this ability is contingent on robustness of the training dataset, number of predictions produced from inferences, and 
the number of different targets containing classes.  We also investigated an “Object Tracking” model, useful since it 
would maintain a history of which targets have already been in view and detected.  This was not a practical solution, 
however, because the accuracy of “Object Tracking” models largely depend on smooth motion.  The sudden 
differences in scale from changing magnification and complex translations were inhibitive to assuming smooth motion 
of the targets, especially at low frame rates.  Finally, we implemented a working “Object Detection” solution, which 
allowed us to detect multiple targets, multiple target types, and their location, which can be a valuable supplemental 
tool to aiding evaluators deduce incorrect scanning techniques or incorrect target prioritization. 
 
An additional lesson learned was the process of model discovery and evaluation to identify a good fit based on 
complexity, robustness, feature extraction process, online/offline training, and other model architecture characteristics.  
Our first selection for the audio recognition was a robust speech-to-text model architecture that trained on audio clips 
with their unaligned text transcripts.  The model architecture was very deep and complex, and took massive amounts 
of data (2300+ hours of audio) and time to train (10-25 days).  We had a limited dataset available to us, and the nature 
of the training data made it difficult to annotate new data.  As a result, the model was in no way performant.  Our next 
choice was the “Small-footprint Keyword Spotting,” which was a significantly simpler model architecture that learns 
features using convolutional layers instead of the abstract feature learning from deep layers, and trains on one second 
samples of isolated utterances paired with the label.  With as little as one hour of audio we could immediately see 
some performance improvements from the “Small-footprint Keyword Spotting” model architecture.  The relationship 
between the complexities of the model architecture became an important consideration due to the amount of data and 
resources required to train it.  This was an iterative pattern as we applied different and additional models to our data 
sets. 
 
Existing AARs consist only of raw data for events that happened during an exercise. Giving context to that data in 
terms of what went well and what could be improved was integral for allowing the recipient of the AAR to digest and 
learn from it.  One should be able to look at the AAR at any given point in time and quickly and effectively understand 
the lessons to be learned.  There are still many data points and types of criteria that could be evaluated to add to the 
robustness of the IAAR system.  Our research team was limited by the data set provided by DRTS.  However, our 
next steps will include more data collection from other Army live training products and instrumentation systems such 
as the Combat Training Center-Instrumentation System (CTC-IS), Home-station Instrumentation Training System 
(HITS), Tactical Engagement Simulation (TES), and embedded training systems through new interfaces, sensors, 
telemetry, etc. that could further expand the IAAR system’s capabilities. 
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